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Abstract

A general transversely isotropic viscohyperelastic constitutive law including strain rate effects was proposed. It is

based on a definition of a general Helmholtz free energy function which depends explicitly on the right Cauchy–Green

deformation tensor, its material time derivative and a structural tensor characterizing the preferred direction from

which anisotropy arises. The elastic and viscous potentials that defined the free energy function were assumed to be

decoupled, thus facilitating the identification process. This law was valid for arbitrary kinematics and aimed at

modeling the mechanical behavior of biological soft tissues at high strain rates and at the finite strain regime. This is of

high relevance for dynamic analyses of human occupants in car crash simulations (finite element analyses) and for

situations where dynamic loads are significant (sport injury, etc). Explicit expression of the stress, elasticity and viscosity

tensors were established. As an application of the constitutive law, the general expressions of the stress tensors were

particularized for a specific Helmholtz free energy function describing the mechanical characteristics of the human

anterior cruciate ligament. The constitutive model was shown to capture the strain rate effects and other essential

characteristics of ligaments such as finite strain, anisotropy and nearly incompressibility. The model was also tested for

various multi-axial loading situations.

� 2004 Published by Elsevier Ltd.
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1. Introduction

The main characteristics of biological soft connective tissues are that they sustain large deformations,

rotations and displacements, have a highly non-linear behavior and possess strongly anisotropic mechanical
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properties (Fung, 1973). Moreover, their behavior is known to be viscoelastic, and this is especially relevant

as the loading rates involved increase. It was shown that the shape of the stress–strain curves at which

traction tests are performed is affected by the loading rate (Chiba and Komatsu, 1993; Haut, 1983; Ken-

nedy et al., 1976; Nowalk and Logan, 1991; Pioletti et al., 1998; Ticker et al., 1996). The study of the
influence of the strain rate on the stress–strain relations shows a general trend for an increase in stress with

a corresponding increasing in the strain rate (Haut and Little, 1972). Although several three-dimensional

continuum anisotropic viscohyperelastic models have been proposed in the past (Holzapfel, 2000; Puso and

Weiss, 1998), their domain of validity is restricted to low strain rates (0.06–0.75 % s�1) (Haut and Little,

1972) and give inaccurate results for higher strain rates (up to 10 % s�1) (Woo et al., 1981).

The continuum constitutive framework developed by Pioletti et al. (1998) was advantageous in that it

was able to encompass strain rate effects (short-term memory effects) by using the rate of deformation as an

explicit variable. However, a serious shortcoming of the constitutive law was the assumption of isotropy. In
fact, due to their fibrous structure (collagen fibers embedded in a highly compliant solid matrix), ligaments

should be modeled as anisotropic structures for most physiological situations where states of pure tension

along the fiber directions are rather the exception than the rule (Limbert, 2001; Limbert and Taylor, 2001a;

Limbert and Taylor, 2001b; Limbert and Taylor, 2002).

The first objective of the present study is therefore to extend the work from Pioletti et al. (1998) to the

transversely isotropic case (the simplest form of anisotropy) by combining the constitutive framework of

Noll (1958) and the theory of continuum fiber-reinforced composite of Spencer (Limbert and Taylor, 2002;

Spencer, 1992).
The second objective is to propose a simple example of application of the constitutive framework by

proposing an original constitutive law and identifying the material parameters with experimental data for

the human anterior cruciate ligament (ACL) (Pioletti et al., 1998).
2. Basic results in continuum mechanics

2.1. Kinematics

Following standard usage in continuum mechanics, we denote by F, the gradient of the deformation

uðX; tÞ:
FðX; tÞ :¼ ouðX; tÞ
oX

¼
X3
i;I¼1

oui

oXI
ei � EI ð1Þ
X is the position of the material point in the reference configuration whilst t is the usual time parameter.
fEIgI¼1;2;3 and feigi¼1;2;3 are fixed orthonormal bases in the Lagrangean and Eulerian configurations

respectively. The uppercase and lowercase letters used in indicial notation refer to the reference and the

deformed (current) configuration, respectively. The right and left Cauchy–Green deformation tensors are

respectively defined as
C :¼ FT � F and b :¼ F � FT ð2Þ
where the superscript ‘T’ denotes the transpose of the linear transformation. For future developments, one

also defines 1 as the second-order identity tensor. The rate of the deformation gradient, also called material

velocity gradient, is given by
_F ¼ _FðX; tÞ ¼ oF

ot
¼ o2x

oXot
¼ o _u

oX
¼ I � F ð3Þ
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where I is the spatial velocity gradient
I ¼ _F � F�1 ð4Þ
The rate of the material metric tensor is an objective tensor expressed as follows:
_C ¼ _CðX; tÞ ¼ _FT � Fþ FT � _F ¼ 2FT � d � F ð5Þ

where d, the spatial rate of deformation tensor, is the symmetric part of I
d ¼ 1

2
ðIþ ITÞ ð6Þ
2.2. Material symmetry

Extensive work has been done on the subject of material symmetry (Cohen and Wang, 1987; Coleman

and Noll, 1964; Ericksen, 1978; Ericksen, 1979; Ericksen and Rivlin, 1954; Negahban and Wineman, 1989a;

Negahban and Wineman, 1989b; Wineman and Pipkin, 1964; Zheng and Boehler, 1994).

Boehler (1978) demonstrated that any scalar-, vector-, and second-order tensor-valued functions of

vectors and second-order tensors relative to any anisotropy characterized in terms of vectors and second-

order tensors can be expressed as an isotropic function of the original tensor agencies and the structural

tensors as additional agencies. This means that the Helmholtz free energy function of an anisotropic

material can be expressed as an isotropic function of its classical three principal strain invariants (as in the
isotropic case) plus invariants relating the right Cauchy–Green deformation tensor, its material rate and

any combination of structural tensors characterizing the anisotropy. Material symmetries are characterized

by symmetry groups that impose restrictions on the form of the strain energy function (Ogden, 1984). Any

orthogonal transformation member of the symmetry group of the material will leave the strain energy

function unchanged when applied to the material in the natural state (prior to deformation).
3. Fiber-reinforced continuum

To describe the constitutive behavior of biological soft connective tissue in the case of transversely

isotropic material symmetry, we consider a material constructed from one family of fibers continuously

distributed in a (highly) compliant solid isotropic matrix (Fig. 1). The result of the geometrical and

mechanical interactions of the two constituents gives the material directional macroscopic properties

(Spencer, 1992). The family of fibers is characterized by a unit vector n0ðXÞ defined in the reference con-
figuration. This vector defines locally the preferred directions from which the anisotropy directly arises and

then the fiber directions can vary within the material. The structural tensor N0 ¼ n0 � n0 has to be intro-

duced. It reflects the local structural arrangement of the fibers and thus defines local directional properties

of the composite material. It is noteworthy that, by construction, N0 is a symmetric second-order tensor.

3.1. Thermodynamic considerations

The existence of a Helmoltz free energy function w, isotropic function of its arguments, is postulated.

The strain energy function w is only a function of X, C, N0 and other second-order tensorial thermody-

namic variables Ak and is therefore written as w ¼ wðX;C;N0;AkÞ.
The invariance requirement of the Helmholtz free energy function with respect to the material symmetry

group is automatically satisfied because the arguments of the function are quantities associated with the
reference configuration.



Fig. 1. Simplified representation of a continuum material made of an isotropic matrix reinforced by one familiy of fibers associated

with direction n0 in the reference configuration. The particular arrangement of the fibers is defined locally and therefore depends on the

position X of the material point. The set of unit vectors (E1, E2, E3) represent an orthonormal basis in the reference configuration.
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In the subsequent developments, it is assumed that the thermomechanical phenomena involved operate
at constant temperature (isothermal process). To formulate the constitutive equations attached to the

proposed material model, it is firstly assumed that the equilibrium state of the viscoelastic solid at fixed F as

t ! 1 derives from a (hyperelastic) free energy function we (defined per unit reference volume)
we ¼ we½X;CðXÞ;N0ðXÞ� ð7Þ

This function is defined at any point X of the body and for any t of the time interval considered. For an

isothermal process, the First and Second Principles of Thermodynamics reduce to the satisfaction of the
Clausius–Duhem inequality (Truesdell and Noll, 1992)
Nint ¼
1

2
S : _C� _we P 0 ð8Þ
where Nint is the internal dissipation or local entropy production. By derivation of w with respect to time

and combination with Eq. (8), we obtain
Nint ¼
1

2
S

�
� 2

owe

oC

�
: _CP 0 8 C; _C ð9Þ
It is assumed that the local entropy is produced by viscous effects which derive from a viscous potential
wv½X;CðXÞ; _CðXÞ;N0ðXÞ�. This leads us to write
Nint ¼
owv

o _C
: _C ¼ 1

2
S

�
� 2

ow
oC

�
: _CP 0 8 C; _C ð10Þ
It is worthy to note that C is a parameter and not a variable in the definition of wv. That means that

coupling between elastic and viscous effects can be accounted for.

Following the standard Coleman–Noll procedure (Coleman and Gurtin, 1967; Coleman and Noll, 1963)

to ensure that Nint P 0 for all admissible processes (arbitrary choices of _C) the expression of the second

Piola–Kirchhoff stress tensor is readily obtained as follows:
S ¼ Se þ Sv ¼ 2
owe

oC

�
þ owv

o _C

�
ð11Þ
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where the following expressions have been defined:
Se ¼ 2
owe

oC
; Sv ¼ 2

owv

o _C
ð12Þ
Se and Sv, the elastic and viscous second Piola–Kirchhoff stress tensors, represent the stress associated with,

respectively, the equilibrium and non-equilibrium states in the Lagrangean configuration.
Finally, it is assumed the existence of a general thermodynamic potential w characterized by a split

decomposition into an elastic and viscous potential we and wv
w½X;CðX; tÞ; _CðX; tÞ;N0ðXÞ� ¼ we½X;CðX; tÞ;N0ðXÞ� þ wv½X;CðX; tÞ; _CðX; tÞ;N0ðXÞ� ð13Þ

The additional tensorial thermodynamic variable Ak is identified with the deformation rate (symmetric)

tensor _C. For sake of clarity, the possible dependence on X and t of C, _C and N0 will be omitted in the next

developments. It is worthy to note that C is a parameter and not a variable in wv.

A set of 17 invariants �Ia are necessary to form the irreducible integrity bases of the tensors C, _C and N0

(Boehler, 1987). In other words, it must exist a strain energy function w, �w : fðRþÞ�g17 ! R such that w
can be written in the following form:
wðX;C; _C;N0Þ ¼ w½f�IaðX;C; _C;N0Þga¼1...17� ð14Þ

The latest form of the strain energy function automatically satisfies the principle of frame indifference

because it is defined from quantities associated with the reference state. To simplify the notations, w and w
are identified: wðX;C; _C;N0Þ ¼ w½X; fIaðC; _C;N0Þga¼1...17�.

It is postulated that
w ¼ we½fIaðX;C;N0Þga¼1...5� þ wv½fJaðX;C; _C;N0Þga¼1...12� ð15Þ

The invariants defining w are the following:
I1 ¼ 1 : C; I2 ¼
1

2
½I21 � ð1 : C2Þ�; I3 ¼ detðCÞ ð16Þ

I4 ¼ N0 : C; I5 ¼ N0 : C
2 ð17Þ

J1 ¼ 1 : _C; J2 ¼
1

2
ð1 : _C2Þ; J3 ¼ detð _CÞ ð18Þ

J4 ¼ N0 : _C; J5 ¼ N0 : _C2 ð19Þ

J6 ¼ 1 : ðC � _CÞ; J7 ¼ 1 : ðC � _C2Þ; J8 ¼ 1 : ðC2 � _CÞ; J9 ¼ 1 : ðC2 _C2Þ ð20Þ

J10 ¼ 1 : ðN0 � C � _CÞ; J11 ¼ 1 : ðN0 � C � _C2Þ; J12 ¼ 1 : ðN0 � C2 � _CÞ ð21Þ

The invariants I1, I2, I3, J1, J2, J3, J6, J7, J8 and J9 characterize the isotropic response of the material while

the other complementary invariants are related to the transversely isotropic mechanical response of the

material.
Observing that:
I4 ¼ n0 � ðC � n0Þ ¼ ðkn0Þ
2 ð22Þ
where kn0 denotes the stretch associated with the direction n0, allows an easy physical interpretation of the

invariants I4 as shown in Eq. (22).

Upon deformation, the unit vector n0 (from the reference configuration) was transformed into a vector
kn0n (Eq. (23)) where n represents the unit vector associated the single family of fibers in the distorted

configuration
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kn0n ¼
ffiffi
I

p
4n ¼ F � n0 ð23Þ
3.2. Definition of stress tensors

Following Eqs. (11) and (15), the expression of the second Piola–Kirchhoff stress tensor is obtained as:
S ¼ 2
X5
a¼1

owe

oIa

oIa
oC

� �"
þ
X12
a¼1

owv

oJa

oJa
o _C

� �#
ð24Þ
The elastic and viscous second Piola–Kirchhoff stress tensors are therefore
Se ¼ 2
X5
a¼1

owe

oIa

oIa
oC

� �
ð25Þ

Sv ¼ 2
X12
a¼1

owv

oJa

oJa
o _C

� �
ð26Þ
The first derivatives of the 17 tensorial invariants with respect to C and _C are
oI1
oC

¼ 1;
oI2
oC

¼ I11� C;
oI3
oC

¼ I21� I1Cþ C2 ¼ I3C
�1 ð27Þ

oI4
oC

¼ N0;
oI5
oC

¼ n0 � C � n0 þ n0 � C� n0 :¼ !n0C ð28Þ

oJ1
o _C

¼ 1;
oJ2
o _C

¼ _C;
oJ3
o _C

¼ J21� J1 _Cþ _C2 ¼ J3 _C
�1 ð29Þ

oJ4
o _C

¼ N0;
oJ5
o _C

¼ n0 � _C � n0 þ n0: _C� n0 :¼ !n0 _C
ð30Þ

oJ6
o _C

¼ C;
oJ7
o _C

¼ C � _Cþ _C � C; oJ8
o _C

¼ C2;
oJ9
o _C

¼ C2 � _Cþ _C � C2 ð31Þ

oJ10
o _C

¼ N0 � C;
oJ11
o _C

¼ N0 � C � _Cþ _C �N0 � C;
oJ12
o _C

¼ N0 � C2 ð32Þ
After algebraic manipulations, the expression of Se and Sv are obtained as
Se ¼ 2½ðwe
1 þ I1w

e
2Þ1� we

2Cþ I3w
e
3C

�1 þ we
4N0 þ we

5!n0C� ð33Þ

Svc ¼ þ2½wv
11þ wv

2
_Cþ J3w

v
3
_C�1 þ wv

4N0 þ wv
5!n0 _C

�
þ 2½wv

6Cþ wv
7ðC � _Cþ _C � CÞ þ wv

8C
2 þ wv

9ðC
2 � _Cþ _C � C2Þ�

þ 2½wv
10ðN0 � CÞ þ wv

11ðN0 � C � _Cþ _C �N0 � CÞ þ wv
12ðN0 � C2Þ� ð34Þ
where the following notations we
a ¼

owe

oIa
and wv

a ¼
owv

oJa
have been introduced.
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In finite elasticity, the Cauchy stress tensor is typically calculated from the second Piola–Kirchhoff stress

tensor by means of the push-forward operation u� (Marsden and Hughes, 1994):
r ¼ re þ rv ¼ 1

J
ðu�SÞ ð35Þ
where
re ¼ 1

J
ðu�S

eÞ ¼ 1

J
F � Se � FT ¼ 2

J
F � owe

oC

� �
� FT ð36Þ

rv ¼ 1

J
ðu�S

vÞ ¼ 1

J
F � Sv � FT ¼ 2

J
F � owv

o _C

� �
� FT ð37Þ
This leads to the following forms for the elastic and viscous Cauchy stress tensors:
re ¼ 2

J
½ðwe

1 þ I1w
e
2Þb� we

2b
2 þ I3w

e
31þ I4w

e
4Nþ I4w

e
5!nb� ð38Þ

rv ¼ 2

J
½wv

1bþ 2wv
2b � ðb � dþ d � bÞ � bþ J3w

v
3ðI�1 þ I�TÞ þ I4w

v
4Nþ 2I4w

v
5!nbd�

þ 2

J
½wv

6b
2 þ 2wv

7ðb3 � d � bþ b � d � b3Þ þ wv
8b

3 þ 2wv
9b � ðb2 � dþ d � b2Þ � b�

þ 2

J
½wv

10I4ðN � bÞ þ 2I4w
v
11ðN � b � d � bþ b � d �N � bÞ þ I4w

v
12ðN � b2Þ� ð39Þ
where the following notations have been introduced:
N :¼ n� n ð40Þ

!nb :¼ n� b � nþ n � b� n ð41Þ

!nbd :¼ n� b � d � b � nþ n � b � d � b� n ð42Þ
To the best of our knowledge, these closed-form expressions of the viscous stress tensors, in the material

and spatial configurations, appear to have not been previously reported in the literature.
3.3. Definition of the elasticity and viscous tensors

In this section, the expressions of the elasticity and viscosity tensors in the material configurations are

derived. Not only do these tensors specify the response of the material to applied strain and strain rate, but

they also give criteria about the actual stability of the structure. However, the discussion of the later

concept is out of the scope of this work. These tensors will also prove to be essential for any finite element

implementation of the material model.
3.3.1. Elasticity and viscosity tensors in the material configuration

Given the structure of the proposed Helmholtz free energy function w, the material elasticity and viscous

tensors are defined through the following split form:
S ¼ Ae
m : Cþ Av

m : _C ð43Þ
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where
Ae
m ¼ 4

o2we

oCoC
¼ 2

oSe

oC
¼ 2

oSe
IJ

oCKL
EI � EJ � EK � EL ð44Þ

Av
m ¼ 4

o2wv

o _Co _C
¼ 2

oSv

o _C
¼ 2

oSv
IJ

o _CKL

EI � EJ � EK � EL ð45Þ
The elasticity tensors thus defined possesses the so-called minor and major symmetries which can be

expressed in indicial notation
ðAe;v
m ÞIJKL ¼ ðAe;v

m ÞKLIJ ¼ ðAe;v
m ÞIJLK ¼ ðAe;v

m ÞJILK ð46Þ
In order to obtain a convenient form for AM, we introduce the following notations (Marsden and Hughes,

1994):
ðIÞIJKL :¼
oCIJ

oCKL
¼ 1

2
ðdIKdJL þ dILdJKÞ ð47Þ

ðI�1
C ÞIJKL :¼

oC�1
IJ

oCKL
¼ � 1

2
ðC�1

IK C
�1
JL þ C�1

IL C
�1
JK Þ ð48Þ

ðI�1
_C
ÞIJKL :¼

o _C�1
IJ

o _CKL

¼ � 1

2
ð _C�1

IK
_C�1
JL þ _C�1

IL
_C�1
JK Þ ð49Þ
I is the identity mapping on the six-dimensional space of symmetric second-order tensors and d is the
Kronecker tensor (dIJ ¼ 1 if I ¼ J , 0 otherwise).

In order to condense the next developments, the following notations are introduced: we
ab ¼

owe

oIaoIb
,

wv
ab ¼

owv

oJaoJb
, Dv

a :¼
owv

a

o _C
;a¼1...12, where the expression of Dv

a is given below
Dv
a :¼

owv
a

o _C
¼ o2wv

oJ1oJa
1þ o2wv

oJ2oJa
_Cþ o2wv

oJ3oJa
_C2 þ o2wv

oJ4oJa
N0 þ

o2wv

oJ5oJa
!n0 _C

þ o2wv

oJ6oJa
Cþ o2wv

oJ7oJa
C � _C
�

þ _C � C
�
þ o2wv

oJ8oJa
C2 þ o2wv

oJ9oJa
ðC2 � _Cþ _C � C2Þ

þ o2wv

oJ10oJa
N0 � Cþ o2wv

oJ11oJa
ðN0 � C � _Cþ _C �N0 � CÞ þ

o2wv

oJ12oJa
N0 � C2 ð50Þ
Differentiating Eq. (33) with respect to C leads to the following form for Ae
m:
Ae
m ¼ 4½ðwe

11 þ 2I1w
e
12 þ we

2 þ I21w
e
22Þ1� 1� ðwe

12 þ I1w
e
22Þð1� Cþ C� 1Þ þ we

22ðC� CÞ � we
2I�

þ 4½ðI3we
3 þ I23w

e
33ÞC

�1 � C�1 þ I3w
e
3I

�1
C þ I3ðwe

13 þ I1w
e
23Þð1� C�1 þ C�1 � 1Þ�

þ 4½�I3w
e
23ðC� C�1 þ C�1 � CÞ� þ 4½ðwe

14 þ I1w
e
24 þ we

5Þð1�N0 þN0 � 1Þ
þ ðwe

15 þ I1w
e
25Þð1�N0C þN0C � 1Þ� þ 4½�we

24ðC�N0 þN0 � CÞ � we
25ðC�N0C þN0C � CÞ�

þ 4½we
44ðN0 �N0Þ þ we

45ðN0 �N0C þN0C �N0Þ þ we
55N0C �N0C�

þ 4½I3we
43ðC

�1 �N0 þN0 � C�1Þ þ I3w
e
53ðC

�1 �N0C þN0C � C�1Þ� ð51Þ
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Differentiating Eq. (34) with respect to _C leads to the following expression form for Av
m:
Av
m ¼ þ4½1� Dv

1 þ _C� Dv
2 þ wv

2Iþ _C2 � Dv
3 þ wv

3I
�1
_C
� þ 4 N0

�
� Dv

4 þ !n0 _C
� Dv

5

þ wv
5 1

�
�
o!n0 _C

o _C
þ
o!n0 _C

o _C
� 1

��
þ 4½C� Dv

6 þ ðC � _Cþ _C � CÞ � Dv
7 þ 2wv

7ð1� Cþ C� 1Þ�

þ 4½C2 � Dv
8 þ ðC2 � _Cþ _C � C2Þ � Dv

9 þ wv
9ð1� C2 þ C2 � 1Þ� þ 4½ðN0 � CÞ � Dv

10

þ ðN0 � C � _Cþ _C �N0 � CÞ � Dv
11 þ wv

11ð1�N0 � CþN0 � C� 1Þ� þ 4½ðN0 � C2Þ � Dv
12� ð52Þ
To the best of our knowledge, the expression of the viscosity tensor, containing coupling contributions

between the matrix and the fibers, has been not previously reported in the literature. The explicit

expression of the elasticity tensor, containing all possible coupling contributions between the matrix and

the fibers, has been previously established by Almeida and Spilker (1998) and Limbert and Taylor (2002)

while the explicit expression of the elasticity tensor for the incompressible case was first established by

Weiss et al. (1996).
3.3.2. Elongation moduli in the material description

From the expression of the elasticity tensors one can define elongation moduli je
n0
(elastic response) and

jv
n0
(viscous response) associated with the fiber direction n0. They characterize the stress response associated

with the deformation and deformation rate in the fiber directions and are therefore directly related to the

appropriate structural tensors by the following relationships:
je
n0
¼ N0 : ðAe

m �N0Þ ð53Þ

jv
n0
¼ N0 : ðAv

m �N0Þ ð54Þ
3.3.3. Bulk modulus in the material description

Similarly to elongation moduli, elastic and viscous bulk moduli can be respectively defined as follows:
je ¼ 1

9
1 : ðAe

m � 1Þ ð55Þ

jv ¼ 1

9
1 : ðAv

m � 1Þ ð56Þ
The elastic bulk modulus characterizes the volumetric stresses associated with volumetric deformations of

the material while the viscous bulk modulus is related to the volumetric stresses associated with spherical

rates of deformation.

3.4. Elasticity and viscous tensor in the spatial configuration

The spatial counterpart of the material elasticity and viscous tensor, Ae
s and Av

s , are, respectively, defined

by the push-forward relations:
ðAe
sÞijkl ¼

1

J
FiIFjJFkKFlLðAe

mÞIJKL ð57Þ

ðAv
sÞijkl ¼

1

J
FiIFjJFkKFlLðAv

MÞIJKL ð58Þ
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4. A particular Helmholtz free energy function for biological soft connective tissues: modeling of the anterior

cruciate ligament

Further to the previous theoretical developments and to define an anisotropic viscohyperelastic con-
stitutive law, the existence of a Helmholtz free energy density w, isotropic function of its arguments

ðI1; I3; I4; J2; J5Þ, is postulated. The choice of the specific invariants will be justified below. It is further

hypothesized that this energy function can be represented by the sum of a strain energy function weðI1; I3; I4Þ
and a viscous energy function wvðJ2; J5Þ:
wðI1; I3; I4; J2; J5Þ ¼ weðI1; I3; I4Þ þ wvðJ2; J5Þ ð59Þ
This particular hypothesis implies that elastic and viscous stresses are additive as hypothesized in numerous

studies like that of Pioletti et al. (1998). However, it does not exclude the coupling between elastic and

viscous invariants in the function wvðJ2; J5Þ because the elastic invariants can be parameters wvðJ2; J5Þ.
Based on these observations wvðJ2; J5Þ is rewritten as wvðJ2; J5; I1; I4Þ. The additive decomposition of stress

corresponds to a Kelvin–Voigt rheological model in which a spring and a dashpot are arranged in parallel.

Superposition principles are often used in biomechanics because of the complexity of the structures

involved that means difficulty of experimental characterization of these interactions, and because it is very

difficult to assume any particular coupling relations between various physical quantities––in our study:

elastic and viscous potentials. One way of dealing with this problem is to assume a particular form (in our

study elastic and viscous energies are additive), check how it performs in specific conditions and then

compare the results with available experimental data. If the mathematical and experimental models are in
good agreement then the initial assumption was valid. However, it is essential to keep in mind that the

assumption is valid only for the particular conditions enforced. If the model is capable of predicting other

loading situations which are not those used for the calibration of the material model, the validity of the

model moves a step further.
4.1. Choice of the invariants characterizing the Helmholtz free energy function w

As I1 is the sum of the square of the eigenvalues of the deformation gradient, it is a convenient invariant

representing the multi-axial state of deformation within the material (see Eq. (16)-1), specifically the ground
substance. I4 is the square of the stretch in the fiber direction (see Eq. (22)) and has a therefore a

straightforward physical interpretation which characterize the directional mechanical properties of the soft

connective tissue introduced by the presence of collagen fibers. I3 characterizes the volumetric response of

the material (see Eq. (16)) and is directly related to the degree of compressibility.

The invariant J2 is the sum of the square of the eigenvalues of the rate of deformation _C and is such that

its derivative with respect to the rate of the right Cauchy–Green deformation tensor is the rate itself (see Eq.

(29)-2). This ensures that a viscous energy function of J2 (first-order term) will lead to terms in the viscous

stress response that are linearly dependent on the rate of deformation _C.
It is noteworthy that, in these conditions, the viscous response does not include non-linear terms in _C.

This can be a limiting hypothesis that needs further investigation. In fact, failure to include non-linear terms

may lead to a constitutive model that does not capture specific non-linear effects. However, in this par-

ticular case it will be shown (Fig. 2 and Table 2) that a linear term (in _C) captures well the viscohyperelastic
mechanical response of the ACL.

J5 was chosen as the second invariant to characterize the anisotropic response of the viscous potential wv.

In a similar manner as J2; J5 represent the sum of the square of the eigenvalues of the rate of deformation _C
projected along the fiber direction. The derivative of J5 with respect to _C leads to a viscous stress term
depending explicitly on _C and n0, unit vector characterizing the local orientation of the fiber.
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Fig. 2. Analytical stress-stretch curves obtained at four different elongation rates: 0.3, 6, 9 and 12 mms�1 for the transversely isotropic

hyperviscoelastic law by identification with the analytical curves from Pioletti’s model. The loading scenario corresponds to uniaxial

extension along the fiber direction (aligned with the direction E3). The nominal stress P33 which corresponds to the actual force divided

by the initial cross section, is easily related to the second Piola–Kirchhoff stress tensor by P33 ¼ F33S33 The curves representing the

response of the transversely isotropic hyperviscoelastic law correspond to the material parameters from Table 2. It is noteworthy that

the elongation rates 0.3, 6, 9 and 12 mms�1 correspond respectively to the deformation rates 1.2% s�1, 25% s�1, 38% s�1 and 50% s�1.

For this loading scenario the deformation gradient is: F ¼ 1ffiffi
k

p E1 � E1 þ 1ffiffi
k

p E2 � E2 þ kE3 � E3.

Table 1

Material coefficients obtained by Pioletti et al. (1998) by identification of an isotropic viscohyperlastic potential with experimental

tensile tests on human ACLs

Material coefficients a [MPa] b g [MPa s]

Pioletti et al. (1998) 0.30± 0.08 12.20± 2.18 39.29± 10.98

The elastic response was assumed to be the response at the lowest strain rate (0.012% s�1) while tensile tests at 25% s�1, 38% s�1 and

50% s�1 allowed the determination of the viscosity coefficient g.
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4.2. Elastic contribution to the Helmholtz free energy function w

The purely elastic behavior of the tissue, represented by the function we, is assumed to arise from the

mechanical response of the ground substance and the collagen fibers. Because of the high water content of

soft connective tissues, the biological material is assumed to be incompressible. As a direct consequence, the



Table 2

Material coefficients obtained by identification of the present transversely isotropic viscohyperelastic model with the Pioletti’s model

(Pioletti et al., 1998)

c1 [MPa] c2 [MPa] c3 g1 [MPa s] g2 [MPa s]

1± 0.2629 1.7939± 0.2859 11.2055± 1.1424 0.0523±3.2654 15.0087± 2.5053

During the non-linear optimization procedure the following constraint was enforced: c1 ¼ 1. The correlation coefficient was

R2 ¼ f0:99361105g.
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third invariant of C, I3, is equal to 1 and does not appear in the equations. Therefore we is reduced to

weðI1; I4Þ. In the absence of relevant experimental data, the interactions between the fibers and the matrix,

that would be represented by a function coupling I1 and I4, are not accounted for. In consequence weðI1; I4Þ
is split into the sum of a strain energy function representing the elastic contribution of the ground substance

we
m and a strain energy function encompassing the anisotropic behaviour introduced by the collagen fibers

we
f (Spencer, 1992)
we ¼ weðI1; I4Þ ¼ we
mðI1Þ þ we

f ðI4Þ ð60Þ
This hypothesis has been used successfully by numerous researchers to describe the mechanical behavior of
soft tissues (Hirokawa and Tsuruno, 2000; Holzapfel et al., 1996; Humphrey, 1990; Humphrey and Yin,

1987; Limbert, 2001; Limbert et al., 2004; Limbert and Taylor, 2001a; Puso and Weiss, 1998; Weiss et al.,

1996).

we
m is chosen as being the strain energy function of an incompressible neo-Hookean material (Ogden,

1984):
we
m ¼ c1ðI1 � 3Þ ð61Þ
The neo-Hookean model has been used by several investigators to represent the elastic behavior of the

ground substance of connective tissues (Limbert, 2001; Limbert et al., 2004; Limbert and Taylor, 2001a;

Weiss et al., 1995; Weiss et al., 1996). For an incompressible material, we
m also exhibits the important

property of convexity which assures stability of the material.

The typical non-linear stiffening of biological soft connective tissues under tension is provided by the

progressive recruitment of the collagen fibers. An exponential form is suitable to represent this behavior

(Eq. (62)-2). Collagen fibers do not support significant compressive loads and collagenous structures are
prone to buckle under very small compressive forces (Eq. (62)-1). The mechanical response of ligaments

under tension along the collagen fibers is only stiffening up to a certain value of strain, typically 2–3%

(Carlstedt and Nordin, 1989). After that point, the tensile behavior of the composite fibrous structure is

almost linear until failure (Eq. (62)-3).

Based on these observations, the following convex function of I4 is proposed to represent the mechanical

contribution of the fibers:
we
f ¼ gðI4Þ ¼

0 if I4 6 1
c3
2c4

½ec4ðI4�1Þ2 � 1� if I4 6 I�4

c5
ffiffiffiffi
I4

p
þ c6 ln I4 if I4 P I�4

8><
>: ð62Þ
c1, c2, c3, c4, c5, c6 and I�4 are material parameters. c6 is determined by postulating C1-continuity of gðI4Þ at
I4 ¼ I�4 where I�4 ¼ ðk�Þ2, k� being the stretch at which collagen fibers are uncrimped.

The objective of the present development was to fit the constitutive parameters of the particular
Helmholtz free energy function w with the experimental data collected by Pioletti (Pioletti, 1997; Pioletti
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et al., 1998) for the human anterior cruciate ligament. These authors used an exponential form for the

isotropic strain energy function based on the form proposed by Veronda and Westmann (1970).

This form was found to fit very well the experimental data up to a value of stretch of 1.12 along the

collagen fiber direction (Pioletti, 1997; Pioletti et al., 1998).
Given that Pioletti et al. (Pioletti, 1997; Pioletti et al., 1998) did not determine I�4 experimentally and

given that the exponential function was found suitable to represent the mechanical response of the ACL up

to a stretch of 1.1–1.125, that is, beyond the usual toe region, it was decided to eliminate the linear term

from the stress response I4
dðc5

ffiffiffi
I4

p
þc6 ln I4Þ
dI4

¼ c5
ffiffiffiffi
I4

p
þ c6 ¼ c5kþ c6 and reduce we

f to the following form:
we
f ¼ gðI4Þ ¼

0 if I4 6 1
c2
2c3

½ec3ðI4�1Þ2 � 1� if I4 > 1

(
ð63Þ
c1, c2 and c3 are material parameters which warrant convexity of the elastic potentials provided that they

are all positive.
4.3. Viscous contribution to the Helmholtz free energy function w

The viscous response of the material is assumed to be provided by the ground substance and from the
collagen fibers. In the absence of experimental data, it is hypothesized that matrix and fiber viscous con-

tributions are additive. This is a simplifying assumption that is believed to provide a good compromise

between analytical–experimental tractability and accuracy. It is important to remind that the present

developments were aimed at the development of a phenomenological model capable of describing the

macroscopic behavior of soft connective tissues. The important characteristic of phenomenological models

is that they do not necessarily reflect the microscopic structure of the material and its behavior at the

microscopic scale. Moreover, the viscous response of the tissue is augmented by a term which arises only

when the collagen fibers start to extend (Eq. (64)-2). This captures the viscous interactions between the
ground substance and the collagen fibers after uncrimping. The following viscosity function wv is therefore

proposed:
wv ¼ wðJ2; I1; J5; I4; Þ ¼
g1J2ðI1 � 3Þ if I4 6 1

g1J2ðI1 � 3Þ þ 1

2
g2J5ðI4 � 1Þ2 if I4 > 1

(
ð64Þ
g1 and g2 are material parameters which warrant convexity of the viscous potentials wv, provided that they

are all positive.

Again, by incorporating elastic invariants (I1 and I4) in the viscous potential wv, one accounts for

coupling between elastic and viscous effects.

4.4. Second Piola–Kirchhoff elastic stress tensor

As a reaction to the kinematic constraint of incompressibility ðI3 ¼ 1Þ, an arbitrary pressure p enters the

stress under the form of a Lagrangean multiplier, determined only by the equations of equilibrium or

motion and the boundary conditions (not the constitutive equations).

By combining Eqs. (33), (61) and (63), the second Piola–Kirchhoff elastic stress tensor is obtained as
Se ¼ 2c11þ pC�1 if I4 6 1

2½c11þ c2ec3ðI4�1Þ2ðI4 � 1ÞN0� þ pC�1 if I4 > 1

�
ð65Þ
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4.5. Second Piola–Kirchhoff viscous stress tensor

By combining Eqs. (34) and (64), the second Piola–Kirchhoff viscous stress tensor is obtained as:
Sv ¼
2½g1ðI1 � 3Þ _C� if I4 6 1

2 g1ðI1 � 3Þ _Cþ 1

2
g2ðI4 � 1Þ2!n0 _C

� �
if I4 > 1

8><
>: ð66Þ
4.6. Identification of material parameters

In order to identify the proposed transversely isotropic hyperviscoelastic constitutive law with experi-

mental data related to tensile tests (in the natural fiber orientation) of the human anterior cruciate ligament

(Pioletti et al., 1998), explicit analytical expressions of the stress in the fiber direction are necessary.

4.6.1. Uniaxial extension in the fiber direction

As for the experimental and identification tests performed by Pioletti et al. (1998), it is assumed a state of

homogeneous deformation with isochoric kinematics. The stretch in the direction of the fibers is noted k. If
the fiber direction is aligned with the direction E3 in the reference configuration, the deformation gradient is

given by F ¼ 1ffiffi
k

p ðE1 � E1 þ E2 � E2Þ þ kE3 � E3. The derivative of J5 is oJ5
o _C

¼ 2 _C33n0 � n0 ¼ 2 _C33E3 � E3.

In this particular configuration, the non-null component of the elastic second Piola–Kirchhoff stress

tensor is:
Se
33 ¼

2c1 1� 1

k3

� �
if k6 1

2c1 1� 1

k3

� �
þ 2c2ec3ðk

2�1Þ2ðk2 � 1Þ if k > 1

8>>><
>>>:

ð67Þ
The non-null component of the viscous second Piola–Kirchhoff stress tensor is
Sv
33 ¼

2g1 k2 þ 2

k
� 3

� �
�

_C11

k3
þ _C33

 !
if k6 1

2g1 k2 þ 2

k
� 3

� �
�

_C11

k3
þ _C33

 !
þ 2g2ðk2 � 1Þ2 _C33 if k > 1

8>>>>><
>>>>>:

ð68Þ
Because of the incompressibility constraint the principal strain rates are dependent upon the following

relation:
_C11 ¼ � 2 _C33

ðC33Þ3
¼ � 2 _C22

ðC22Þ3
ð69Þ
which leads to
Sv
33 ¼

2g1 k2 þ 2

k
� 3

� �
1þ 1

2k6

� �
_C33 if k6 1

2g1 k2 þ 2

k
� 3

� �
1þ 1

2k6

� �
_C33 þ 2g2ðk2 � 1Þ2 _C33 if k > 1

8>>><
>>>:

ð70Þ
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The isotropic viscohyperelastic potential proposed by Pioletti et al. (1998) is the following:
Fig. 3.

Stress-

compre

isotrop

12 mm

model

comes
w ¼ wðI1; I2; J2Þ ¼ aebðI1�3Þ � ab
2
ðI2 � 3Þ þ g

4
J2ðI1 � 3Þ ð71Þ
where a; b and g are material parameters consigned in Table 1.

The non-null component of the elastic second Piola–Kirchhoff stress tensor for Pioletti’s model is
Se
33 ¼ ab

�2eb k2þ2
k�3ð Þ

k3

"
þ 1

k
þ 1

k4
þ 2eb k2þ2

k�3ð Þ � 2

k

#
ð72Þ
The non-null component of the viscous second Piola–Kirchhoff stress tensor for Pioletti’s model is
Sv
33 ¼ g _k k2

�
þ 2

k
� 3

�
1

�
þ 1

2k6

�
ð73Þ
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Comparison between the present transversely isotropic hyperviscoelastic model and Pioletti’s isotropic hyperviscoelastic model.

stretch curves obtained at four different elongation rates: 0.3, 6, 9 and 12 mms�1. The loading scenario corresponds to uniaxial

ssion–extension along the fiber direction (aligned with the direction E3). The curves representing the response of the transversely

ic hyperviscoelastic law correspond to material parameters from Table 2. It is noteworthy that the elongation rates 0.3, 6, 9 and

s�1 correspond, respectively, to the deformation rates 1.2% s�1, 25% s�1, 38% s�1 and 50% s�1. The isotropic hyperviscoelastic

exhibits an unrealistically high stiffness in compression along the fiber direction whilst the transversely isotropic model over-

this unwanted feature. For this loading scenario the deformation gradient is: F ¼ 1ffiffi
k

p E1 � E1 þ 1ffiffi
k

p E2 � E2 þ kE3 � E3.
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The global response of the material is given by S33 ¼ Se
33 þ Sv

33. Using a least-square non-linear optimization

procedure, the material parameters c1, c2, c3, g1 and g2 were determined from the analytical curves, pre-

viously identified by Pioletti et al. (1998). As these curves were obtained for tensile tests in the fiber direction

and by assuming isotropy of the material, it was necessary to relate the response of the matrix when no fiber
contributes. This was done by giving the estimated value of 1 MPa to the compliant solid matrix, also called

ground substance (Ault and Hoffman, 1992; Limbert, 2001; Limbert et al., 2004; Limbert and Taylor,

2001a). The graphic results of the identification is represented in Fig. 2. After identification of the trans-

versely isotropic hyperviscoelastic potential with Pioletti’s data and to check the performance of the model

in other simple loading situations, equibiaxial compression–extension along the fiber and isotropy direc-

tion, strip biaxial compression extension along the fiber direction and pure shear in the isotropy plane were

simulated (Figs. 4–9). Deformations are assumed to be homogeneous.
5. Results and discussion

During the identification procedure it was found that values of g1 greater than 0.055 MPa s�1 led to

unphysical behavior for high strain rates (50% s�1) in the case of equibiaxial compression–extension along
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Fig. 4. Analytical stress-stretch curves (nominal stress P33 along the direction E3) obtained at four different elongation rates: 0.3, 6, 9

and 12 mms�1 for the present isotropic hyperviscoelastic model. The loading scenario corresponds to equibiaxial compression–

extension along the fiber direction (aligned with the direction E3) and along the axis aligned with E2. Material parameters of the

transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the deformation gradient is:

F ¼ 1

k2
E1 � E1 þ kE2 � E2 þ kE3 � E3.
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the fiber direction and along any axis perpendicular to it. Examples of this were positive stresses in

compression and negative in tension for certain ranges of stretch. Based on this finding, Pioletti’s model

was checked for this particular loading scenarios and unphysical behavior was also observed, especially

since the viscosity coefficient g has a value of 39.29 MPa. This highlights the importance of testing a
model for different loading scenarios and for various strain and strain rate ranges. It is also relevant to

keep in mind that homogeneous deformation loading scenarios are highly idealized cases that are likely

not to be encountered in real-life problems. Further efforts should be directed towards exploring new

functional form for the elastic and viscous potentials as well as studying the mathematical properties of

the associated elasticity and viscosity tensors which can lead to the establishment of explicit constitutive

restrictions.

The proposed Helmoltz free energy function, while encompassing essential features of the ligaments

(non-linear behaviour, stiffening in the fiber direction, high compliance in compression along the fiber
direction, incompressibility, finite strain, anisotropic viscous response and strain rate effects), was capable

of fitting accurately the analytical–experimental curves from Pioletti et al. (1998).

The strain rate effects, observed by Pioletti et al. (1998), are therefore also highlighted by the new

constitutive model (Figs. 2 and 3). The elastic response is described by only three parameters while the

viscous response is described by two parameters.
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Fig. 5. Analytical stress-stretch curves (nominal stress P22 along the direction E2) obtained at four different elongation rates: 0.3, 6, 9

and 12 mms�1 for the present isotropic hyperviscoelastic model. The loading scenario corresponds to equibiaxial compression–

extension along the fiber direction (aligned with the direction E3) and along the axis aligned with E2. Material parameters of the

transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the deformation gradient is:

F ¼ 1

k2
E1 � E1 þ kE2 � E2 þ kE3 � E3.
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In the optimization procedure, in order to fit experimental data from Pioletti et al. (1998), the consti-

tutive requirement put on the small value of the isotropic viscosity coefficient g1 (to prevent introduction of

unphysical behaviors) has led to a dominant influence of the anisotropic viscosity coefficient g2 on the

viscous response of the transversely isotropic hyperelastic material in uniaxial extension along the fiber
direction. This has the effect of attenuating the viscous effects when the material undergoes uniaxial

compression. On Fig. 3 one can observe that the viscohyperelastic responses at the various strain rates

(0.012 (purely elastic case), 25% s�1, 38% s�1 and 50% s�1) are nearly identical. This is also observed for the

strip biaxial compression case (Figs. 6 and 7).

The basic hypothesis to justify the extension of Pioletti’s model to the transverse isotropy case was that

isotropic models perform badly when subjected to compression along the natural fiber orientation. In fact,

high unphysiological compressive stresses are generated and this is clearly apparent in Fig. 3. Unlike the

nearly symmetrical response in tension and compression along the fibers, observed for the isotropic model,
the transversely isotropic model exhibits a much softer response in compression. This is a clear improve-

ment over isotropic models and shows how particular structural features can be incorporated into phe-

nomenological constitutive equations.

Figs. 4 and 5 presents the response of the material submitted to equibiaxial compression-extension. As

expected from the constitutive formulation, the response in compression and extension is identical along the

fiber direction and along the principal direction in the plane of isotropy ðE2Þ. As for the uniaxial extension
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Fig. 6. Analytical stress-stretch curves (nominal stress P33 along the direction E3) obtained at four different elongation rates: 0.3, 6, 9

and 12 mms�1 for the present isotropic hyperviscoelastic model. The loading scenario corresponds to strip biaxial compression–

extension along the fiber direction (aligned with the direction E3). Material parameters of the transversely isotropic hyperviscoelastic law

are taken from Table 2. For this loading scenario the deformation gradient is: F ¼ 1
kE1 � E1 þ E2 � E2 þ kE3 � E3.
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along the fiber direction, the strain rate effects can also be observed. In extension along the axes E2, the

viscoelastic response is lower in magnitude than the purely hyperelastic response. This effect is explained by

the fact that the simultaneous extension along E3, has dominant viscous effects (dependence on the aniso-

tropic viscosity coefficient g2) on the resulting hydrostatic pressure equilibrating the extension along E2.
Figs. 6 and 7 present the response of the material submitted to strip biaxial compression–extension along

the fiber direction. In compression, the response is stiffer along the fiber than along E2. Strain rates effects

are apparent in extension along the fiber direction (Fig. 6).

Figs. 8 and 9 present the response (respectively, P12 and P21) of the material submitted to pure shear in the

plane of isotropy. It is worthy to note that the nominal stress tensor is not symmetric. Viscous effects are

clearly dominant with respect to the elastic response and the shapes of the stress-stretch curves is closely

related to the strain rates at which the shear tests are performed.

The hyperelastic response of the ground substance was assumed to be governed by a neo-Hookean strain
energy function. Although this hypothesis is suitable to represent the isotropic mechanical response of the

tissue it is believed that alternative strain energy functions must be investigated as recently proposed byWeiss

et al. (2002). Similarly, other forms of strain energy functions for the fiber contributions should be considered.

As an alternative approach to the present study, the work by Hoffman and Grigg (2002) (and references

given therein) presents other possible ways to investigate experimentally the mechanical response of soft
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Fig. 7. Analytical stress-stretch curves (nominal stress P22 along the direction E2) obtained at four different elongation rates: 0.3, 6, 9

and 12 mms�1 for the present isotropic hyperviscoelastic model. The loading scenario corresponds to strip biaxial compression–

extension along the fiber direction (aligned with the direction E3). Material parameters of the transversely isotropic hyperviscoelastic law

are taken from Table 2. For this loading scenario the deformation gradient is: F ¼ 1
kE1 � E1 þ E2 � E2 þ kE3 � E3.
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tissues. The idea is to apply a pseudorandom Gaussian stress input to the tissue to be tested and to measure

the strain response. From the output, the Volterra–Wiener kernels are calculated. The advantage of this

protocol is that no a priori forms of the constitutive equations are required and that the pseudorandom

stress input does not restrict the testing to specific loading scenarios. In consequence, the calculated
material parameters are more likely to encompass a larger domain of validity frequency wise. In their study,

Hoffman and Grigg (2002) considered only uniaxial testing on rat skin and medial collateral ligament al-

though the method can be applied to multi-axial testing. Moreover, this experimental approach can

accommodate linear as well as non-linear viscoelastic effects and can distinguish their respective influence of

the tissue behaviour. A possible drawback is the practical testing of specimens for large deformations and

for extremely short times.

Comparable work has been performed by Quaglini et al. (2002). The authors used a discrete-time non-

linear Wiener model for determining the relaxation characteristics of bovine pericardium. Like in the study
of Hoffman and Grigg (2002), it was found that the non-linear kernel is necessary to capture more accu-

rately the mechanical response of the tissue. This approach is also suitable for implementation into a

predictive numerical code.
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the present isotropic hyperviscoelastic model. The loading scenario corresponds to pure shear in the plane of isotropy (defined by E1 and

E2). Material parameters of the transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the

deformation gradient is: F ¼ cE1 � E2 þ E1 � E1 þ E2 � E2 þ E3 � E3.
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The particular Helmholtz free energy function described in Section 4 is such that the viscous stress tensor

depends linearly on the rate of deformation although the general framework developed in Section 3 can

accommodate a second-order non-linear dependence. The Helmholtz free energy function chosen was a

simple application of the constitutive framework and was limited by the nature of the experimental data

collected by Pioletti et al. (1998) which were identified with a linear strain rate model.

It is believed that in the context of high strain rate loading situations subjecting ligaments, the inclusion

of non-linear rate terms is relevant but not necessarily in the case of uniaxial tensile tests performed at

constant strain rates. Additional studies will be required to answer these questions with certainty.
6. Concluding remarks

In this study, the constitutive framework of Noll (1958), previously applied to soft tissue modeling by
Pioletti et al. (1998), has been developed for the specific case of transverse isotropy at the finite strain
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regime. The continuum constitutive model developed by Pioletti et al. (1998) had the merit to encompass

strain rate effects by using the rate of deformation as an explicit variable. However, a limitation of this

constitutive law was the assumption of isotropy. In fact, due to their fibrous structure (collagen fibers

embedded in a highly compliant solid matrix), modeling ligaments as anisotropic structures is indeed a
basic necessary requirement (Limbert, 2001; Limbert and Taylor, 2001a; Limbert and Taylor, 2001b;

Limbert and Taylor, 2002). Although viscohyperelastic constitutive laws featuring transverse isotropy

were already available (Holzapfel, 2000; Puso and Weiss, 1998), none of them was describing faithfully

the very short-term stiffening effect associated with strain rate, as observed in biological soft tissue

mechanics (Woo et al., 1981). In order to circumvent this lack in the literature, a new constitutive

framework was presented in the context of tensor formalism (with use of a structural tensor describing

the local structural arrangement of the continuum) and thermodynamic potentials. The general consti-

tutive law has been developed to take into account simultaneously the fibrous and viscous characteristics
of biological soft tissues while remaining thermodynamically admissible (convexity of thermodynamic

potentials enforced a priori).

New closed-form expressions of viscous stress tensors as well as fictitious viscosity tensors were derived

in the general case of transverse isotropy, that is, without restricting the way (coupling) the invariants

characterizing the viscosity appear in the expression of the viscous potential. The expression for the vis-

cosity tensor is of interest, because, in addition of its relevance to predict and explore the mechanical

behavior of a given material, this tensor holds fundamental mathematical properties of the constitutive law.

Stability studies and constitutive restrictions generally rely on arguments based on these properties.
The general expressions of the stress, elasticity and viscosity tensors are also essential in the finite element

implementation of constitutive laws for fiber-reinforced composites and it is hoped that they will be useful

with this regards.

The present phenomenological formulation is fairly simple but its drawback lies in the fact that the

tensorial invariants of the right Cauchy–Green deformation tensor, its rate and agencies of the structural

tensor considered do not all have a physical interpretation. Applicability of the general viscohyperelastic

fiber-reinforced composite model remains to be explored on experimental grounds but with suitable

experimental material characterization one can envisage to integrate complex interactions between ele-
mental constituents within a constitutive law.

This aspect is possibly the most challenging as well as separating and identifying viscous effects between

the ground substance and the collagen fibers. In the present model it was assumed that the viscous response

provided by the interactions between the collagen fibers and the ground substance was accounted only

when the fibers are uncrimped. This possibly limits the applicability of the model for explicit accounting of

the viscous interactions between the ground substance and the collagen fibers which are known to arise

during uncrimping of the collagen fibers. Further studies should look at the way of integrating these

characteristics into the constitutive equations and ways of designing appropriate experimental protocols to
capture accurately elastic and viscous effects.
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