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Abstract

A general transversely isotropic viscohyperelastic constitutive law including strain rate effects was proposed. It is
based on a definition of a general Helmholtz free energy function which depends explicitly on the right Cauchy—Green
deformation tensor, its material time derivative and a structural tensor characterizing the preferred direction from
which anisotropy arises. The elastic and viscous potentials that defined the free energy function were assumed to be
decoupled, thus facilitating the identification process. This law was valid for arbitrary kinematics and aimed at
modeling the mechanical behavior of biological soft tissues at high strain rates and at the finite strain regime. This is of
high relevance for dynamic analyses of human occupants in car crash simulations (finite element analyses) and for
situations where dynamic loads are significant (sport injury, etc). Explicit expression of the stress, elasticity and viscosity
tensors were established. As an application of the constitutive law, the general expressions of the stress tensors were
particularized for a specific Helmholtz free energy function describing the mechanical characteristics of the human
anterior cruciate ligament. The constitutive model was shown to capture the strain rate effects and other essential
characteristics of ligaments such as finite strain, anisotropy and nearly incompressibility. The model was also tested for
various multi-axial loading situations.
© 2004 Published by Elsevier Ltd.
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1. Introduction

The main characteristics of biological soft connective tissues are that they sustain large deformations,
rotations and displacements, have a highly non-linear behavior and possess strongly anisotropic mechanical
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properties (Fung, 1973). Moreover, their behavior is known to be viscoelastic, and this is especially relevant
as the loading rates involved increase. It was shown that the shape of the stress—strain curves at which
traction tests are performed is affected by the loading rate (Chiba and Komatsu, 1993; Haut, 1983; Ken-
nedy et al., 1976; Nowalk and Logan, 1991; Pioletti et al., 1998; Ticker et al., 1996). The study of the
influence of the strain rate on the stress—strain relations shows a general trend for an increase in stress with
a corresponding increasing in the strain rate (Haut and Little, 1972). Although several three-dimensional
continuum anisotropic viscohyperelastic models have been proposed in the past (Holzapfel, 2000; Puso and
Weiss, 1998), their domain of validity is restricted to low strain rates (0.06-0.75 %s~") (Haut and Little,
1972) and give inaccurate results for higher strain rates (up to 10 %s~!) (Woo et al., 1981).

The continuum constitutive framework developed by Pioletti et al. (1998) was advantageous in that it
was able to encompass strain rate effects (short-term memory effects) by using the rate of deformation as an
explicit variable. However, a serious shortcoming of the constitutive law was the assumption of isotropy. In
fact, due to their fibrous structure (collagen fibers embedded in a highly compliant solid matrix), ligaments
should be modeled as anisotropic structures for most physiological situations where states of pure tension
along the fiber directions are rather the exception than the rule (Limbert, 2001; Limbert and Taylor, 2001a;
Limbert and Taylor, 2001b; Limbert and Taylor, 2002).

The first objective of the present study is therefore to extend the work from Pioletti et al. (1998) to the
transversely isotropic case (the simplest form of anisotropy) by combining the constitutive framework of
Noll (1958) and the theory of continuum fiber-reinforced composite of Spencer (Limbert and Taylor, 2002;
Spencer, 1992).

The second objective is to propose a simple example of application of the constitutive framework by
proposing an original constitutive law and identifying the material parameters with experimental data for
the human anterior cruciate ligament (ACL) (Pioletti et al., 1998).

2. Basic results in continuum mechanics
2.1. Kinematics

Following standard usage in continuum mechanics, we denote by F, the gradient of the deformation
o(X,1):

F(X,?) :=

—e QK (1)

dp(X, 1) <~ g
oxX oX;

il=1

X is the position of the material point in the reference configuration whilst ¢ is the usual time parameter.
{E;},_,; and {e},_,,; are fixed orthonormal bases in the Lagrangean and Eulerian configurations
respectively. The uppercase and lowercase letters used in indicial notation refer to the reference and the
deformed (current) configuration, respectively. The right and left Cauchy—Green deformation tensors are
respectively defined as

C:=F'"-F and b:=F -F' (2)

where the superscript “T” denotes the transpose of the linear transformation. For future developments, one
also defines 1 as the second-order identity tensor. The rate of the deformation gradient, also called material
velocity gradient, is given by

_OF  ¥°x  Oa
ot oXor oX

F=F(X,) I-F (3)
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where | is the spatial velocity gradient

|=F.F )
The rate of the material metric tensor is an objective tensor expressed as follows:
C=CX,)=F"-F+F . F=2F".d-F (5)
where d, the spatial rate of deformation tensor, is the symmetric part of |
1
d=2(+ ) (6)

2.2. Material symmetry

Extensive work has been done on the subject of material symmetry (Cohen and Wang, 1987; Coleman
and Noll, 1964; Ericksen, 1978; Ericksen, 1979; Ericksen and Rivlin, 1954; Negahban and Wineman, 1989a;
Negahban and Wineman, 1989b; Wineman and Pipkin, 1964; Zheng and Boehler, 1994).

Boehler (1978) demonstrated that any scalar-, vector-, and second-order tensor-valued functions of
vectors and second-order tensors relative to any anisotropy characterized in terms of vectors and second-
order tensors can be expressed as an isotropic function of the original tensor agencies and the structural
tensors as additional agencies. This means that the Helmholtz free energy function of an anisotropic
material can be expressed as an isotropic function of its classical three principal strain invariants (as in the
isotropic case) plus invariants relating the right Cauchy—-Green deformation tensor, its material rate and
any combination of structural tensors characterizing the anisotropy. Material symmetries are characterized
by symmetry groups that impose restrictions on the form of the strain energy function (Ogden, 1984). Any
orthogonal transformation member of the symmetry group of the material will leave the strain energy
function unchanged when applied to the material in the natural state (prior to deformation).

3. Fiber-reinforced continuum

To describe the constitutive behavior of biological soft connective tissue in the case of transversely
isotropic material symmetry, we consider a material constructed from one family of fibers continuously
distributed in a (highly) compliant solid isotropic matrix (Fig. 1). The result of the geometrical and
mechanical interactions of the two constituents gives the material directional macroscopic properties
(Spencer, 1992). The family of fibers is characterized by a unit vector ny(X) defined in the reference con-
figuration. This vector defines locally the preferred directions from which the anisotropy directly arises and
then the fiber directions can vary within the material. The structural tensor Ny = ny ® ny has to be intro-
duced. It reflects the local structural arrangement of the fibers and thus defines local directional properties
of the composite material. It is noteworthy that, by construction, Ny is a symmetric second-order tensor.

3.1. Thermodynamic considerations

The existence of a Helmoltz free energy function v, isotropic function of its arguments, is postulated.
The strain energy function  is only a function of X, C, N, and other second-order tensorial thermody-
namic variables A; and is therefore written as ¥ = (X, C, Ny, A;).

The invariance requirement of the Helmholtz free energy function with respect to the material symmetry
group is automatically satisfied because the arguments of the function are quantities associated with the
reference configuration.
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Family of  fibers
aligned along n,

Solid isotropic matrix

Fig. 1. Simplified representation of a continuum material made of an isotropic matrix reinforced by one familiy of fibers associated
with direction ny in the reference configuration. The particular arrangement of the fibers is defined locally and therefore depends on the
position X of the material point. The set of unit vectors (E;, E,, E;) represent an orthonormal basis in the reference configuration.

In the subsequent developments, it is assumed that the thermomechanical phenomena involved operate
at constant temperature (isothermal process). To formulate the constitutive equations attached to the
proposed material model, it is firstly assumed that the equilibrium state of the viscoelastic solid at fixed F as
t — oo derives from a (hyperelastic) free energy function ¥ (defined per unit reference volume)

¥ = ¢IX, C(X), No(X)] (7)

This function is defined at any point X of the body and for any ¢ of the time interval considered. For an
isothermal process, the First and Second Principles of Thermodynamics reduce to the satisfaction of the
Clausius-Duhem inequality (Truesdell and Noll, 1992)

1 ..
Eim:ES:C—we>0 (8)

where Zj, is the internal dissipation or local entropy production. By derivation of y with respect to time
and combination with Eq. (8), we obtain

Eint%<52%>ZC>0 v ¢ ©)

It is assumed that the local entropy is produced by viscous effects which derive from a viscous potential

VX, C(X), C(X),No(X)]. This leads us to write
ot .1
Eint = i . C ==

v 2(8—2%>:C>0 v C,C (10)

oC
It is worthy to note that C is a parameter and not a variable in the definition of y'. That means that
coupling between elastic and viscous effects can be accounted for.

Following the standard Coleman—Noll procedure (Coleman and Gurtin, 1967; Coleman and Noll, 1963)
to ensure that Z;; > 0 for all admissible processes (arbitrary choices of C) the expression of the second
Piola—Kirchhoff stress tensor is readily obtained as follows:

o oy
=S +S" =2 —+"- 11
S=S8+S (6C+6C) (11)
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where the following expressions have been defined:
¢ A%
=2 %, S'=2 Glp.
oC oC
S°¢ and SY, the elastic and viscous second Piola—Kirchhoff stress tensors, represent the stress associated with,
respectively, the equilibrium and non-equilibrium states in the Lagrangean configuration.
Finally, it is assumed the existence of a general thermodynamic potential y characterized by a split
decomposition into an elastic and viscous potential ¢ and "

SC

(12)

w[Xv C(Xv t)? C(X7 t)? NO(X)] = ‘//S[Xv C(Xa t)’ NO(X)] + ‘//V[X’ C(Xv t)v C(Xv t)v NO(X)] (13)
The additional tensorial thermodynamic variable A, is identified with the deformation rate (symmetric)
tensor C. For sake of clarity, the possible dependence on X and 7 of C, C and N, will be omitted in the next
developments. It is worthy to note that C is a parameter and not a variable in . )
A set of 17 invariants I, are necessary to form the irreducible integrity bases of the tensors C, C and Ny
(Boehler, 1987). In other words, it must exist a strain energy function \/, | : {(‘R*)x}17 — R such that
can be written in the following form:

w(X7C7C7N0) = w[{jx(xaCaCaNO)}a:IMW] (14)

The latest form of the strain energy function automatically satisfies the principle of frame indifference
because it is defined from quantities associated with the reference state. To simplify the notations, y and y
are identified: (X, C, C,No) = ¥[X, {L,(C,C,No)},_; 4.

It is postulated that

Y = VLXK, CNo Yy sl + ¥ [{L(X C C N b, o] (15)
The invariants defining  are the following:

I =1:C, 12:%[112—(1:C2)], Iy = det(C) (16)
I, =Ny:C, Is=N;:C? (17)
Ji=1:C, J2:%(1:C2), J; = det(C) (18)
Ji=Ny:C, Js=N;:C? (19)
Jo=1:(C-C), J;,=1:(C-C, J=1:(C-C), Jo=1:(CC? (20)
Jo=1:(Ny-C-C), Jy=1:Ny-C-C?), Jp=1:(Ny-C*-C) (21)

The invariants I, b, I3, J1, J», J3, Js, J7, Jg and Jy characterize the isotropic response of the material while
the other complementary invariants are related to the transversely isotropic mechanical response of the
material.

Observing that:

L=ng-(C-ng) = (/) (22)

where /,, denotes the stretch associated with the direction ny, allows an easy physical interpretation of the
invariants /4 as shown in Eq. (22).

Upon deformation, the unit vector ny (from the reference configuration) was transformed into a vector
/n,0 (Eq. (23)) where n represents the unit vector associated the single family of fibers in the distorted
configuration
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JngM = VI;m =F -n,

3.2. Definition of stress tensors

Following Egs. (11) and (15), the expression of the second Piola—Kirchhoff stress tensor is obtained as:

> [y dl, 2 /oyt
S_zlz(a@E%;(MaC)

=1

The elastic and viscous second Piola—Kirchhoff stress tensors are therefore
5 e
oy° al,
St=2 —
> (% ¢)

y 12 6‘//V6Ja
S _2Z<M £>

o=1

The first derivatives of the 17 tensorial invariants with respect to C and C are

o oL ol 2 el
el 56=11-C ;5=hl1-1C+C=IC

ol oI

a—é:No, a—éZﬂg@C-n0+nO-C®n0::YnUC

oJ oh . o . .

o1, 2=C Z=nl-sC+E =

oC oC oC

o, s : :

— =Ny, —=n®C-ny+ny.CxRny:=7, ¢

oC 0 oC 0 ] ] ] e

a—‘l.ézc, a—‘].7=C.C+C-C, a—‘]f‘:cz, a—‘].9=c2-C+C-c2
oC oC oC oC
ai.“’:NO.C, %:NO-C.C+C.NO-C, aLTZ:NO~C2
oC oC oC

After algebraic manipulations, the expression of S° and S are obtained as

S = 2[(y§ + Iy5)1 — Y5C + LYSC" + Y§No + Y5 Yac]

S'c = +2[Y)1 + Y3C + J5YsC ' + YNy + YA, ¢
+2[C +Y(C - C+ C-C) + YyC? + Y3 (C* - C+ C - CY)]
+2[3(No - €©) + ¢},(Nog - C- C+ C Ny - €) + ¢}, (No - C?)]

where the following notations y/; = f;’—f and ) = % have been introduced.

(24)

(25)

(26)
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In finite elasticity, the Cauchy stress tensor is typically calculated from the second Piola—Kirchhoff stress
tensor by means of the push-forward operation ¢, (Marsden and Hughes, 1994):

o= ta = (0.9 (35)
where

e 1 oy | ¢ gT_ 2 oy* T

a—J((p*S)—JF S°.F —JF (6C> F (36)

v_1 \4 _1 \4 T_2 al/jv T

O'—J(QD*S)—JF S'-F —JF (GC) F (37)

This leads to the following forms for the elastic and viscous Cauchy stress tensors:

2 (] € (] ¢ (] (]
0 = Z1(W5 + g5 — s+ LysT+ LN + LS W) (38)
2
o' =~[y1b+2ysb- (b-d+d-b) b SYS H1T) + LaN A 2005 Y]
2
+ 5 Wb’ + 256> -d b+ b-d - b7) + b’ + 2ysh- (b7 d +d-b7) - b]

+§[¢YOI4(N -b) + 20}, (N-b-d-b+b-d-N-b) + Li)},(N-b*)] (39)

where the following notations have been introduced:

N:=n®n (40)
Yop:=n®b-n4+n-b®n (41)
Yupa:=n®b-d-b-n+n-b-d-b®n (42)

To the best of our knowledge, these closed-form expressions of the viscous stress tensors, in the material
and spatial configurations, appear to have not been previously reported in the literature.

3.3. Definition of the elasticity and viscous tensors

In this section, the expressions of the elasticity and viscosity tensors in the material configurations are
derived. Not only do these tensors specify the response of the material to applied strain and strain rate, but
they also give criteria about the actual stability of the structure. However, the discussion of the later
concept is out of the scope of this work. These tensors will also prove to be essential for any finite element
implementation of the material model.

3.3.1. Elasticity and viscosity tensors in the material configuration
Given the structure of the proposed Helmholtz free energy function y, the material elasticity and viscous
tensors are defined through the following split form:

S=A°:C+A):C (43)
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where
. *My* os® oS¢,
A =%5c0c = 2ac ~Pag, O OOk “
2 \4 v
V_4a¢ 268. :26S”E,®EJ®EK®EL (45)

” oCaC oC 0Cx;

The elasticity tensors thus defined possesses the so-called minor and major symmetries which can be
expressed in indicial notation

(Ai;/,V)IJKL = (AZV)KLIJ = (AZV)IJLK = (AZ/V)JILK (46)

In order to obtain a convenient form for A, we introduce the following notations (Marsden and Hughes,
1994):

oC,
Dz = WZ =5 (511<5JL + On0x) (47)
_ oC;! 1, ., o
(ICI)IJKL = ﬁ = D) (CIK1 CJLl + C]L1 CJKl) (48)
- oc1 1. .. L.
(ICI)IJKL = # =73 (CJK1 CJLI + C1L1 CJKI) (49)
KL

I is the identity mapping on the six-dimensional space of symmetric second-order tensors and & is the
Kronecker tensor (6 = 1 if I =J, 0 otherwise).

In order to condense the next developments, the following notations are introduced: —ie,ﬁ,
Wy = a}‘? 7 47 = ad/c =1..12, Where the expression of 4] is given below
oy, Y Y s Y, Y oy’
4 =—>2= 1 N Y .
« = ¢ “anad, Tanas, € T ananC Tanan N T anes, Yue
AP AR U o, BV o el
C c-c+C-C C c-c+cC-C
s, oo, (c-c+c0)+ aen, © tapas, € €reC)
Y A oy’ 2
——Np-C No-C-C+C-Ny-C)+—-—N;-C 50
T aman 0 St anay, Mo € CHC N O may No (50)

Differentiating Eq. (33) with respect to C leads to the following form for A° :

A, = 4[5+ 2005, s F Y5) 1@ 1 — (U, + 1) (1@ C+ C@ 1) + 95,(C @ C) — Yl
F ALY+ Bys)C @ C 4+ BYSIE + LS, + hs) (1@ C +C' 1))
+ 4Ly (CoC +C' @ CO) + 4[5, + LS, + )1 O Ng+ Ny @ 1)
+ (Y55 + 11Yh55) (1 ® Noc + Noc @ 1)] 4+ 4[—5,(C @ No + No @ C) — ¢h35(C @ Noc + Noc @ C)]
+ 4[5, (No @ No) + ¢35 (No @ Noc + Noc @ No) + 5sNoc @ Noc]
+ ALY (CT @ Ny +Ng® C1) 4+ Ly (€' @ Noe + Noe @ €] (51)
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Differentiating Eq. (34) with respect to C leads to the following expression form for A

Al =+l 4]+ C 43+ 5T+ C @ 4y + Y31 + 4| No @ 45 + Y, ¢ ® 4%

.

oC oC
HAC R M+ (C-C+C-C) @My +Ys(10 C+ C @ 1)] +4[(Ny - C) ® 4,
+(Ny-C-C+C-No-C) @4}, +y,(1& Ny - C+ Ny - Co 1) +4[(Ng- C) @ 4},]  (52)

v aY‘nC aY'nC - - v
+Yi1——+—"01 ]| +4C4{+(C-C+C-O) 47+ 2y;(1 C+ C®1)]

To the best of our knowledge, the expression of the viscosity tensor, containing coupling contributions
between the matrix and the fibers, has been not previously reported in the literature. The explicit
expression of the elasticity tensor, containing all possible coupling contributions between the matrix and
the fibers, has been previously established by Almeida and Spilker (1998) and Limbert and Taylor (2002)
while the explicit expression of the elasticity tensor for the incompressible case was first established by
Weiss et al. (1996).

3.3.2. Elongation moduli in the material description

From the expression of the elasticity tensors one can define elongation moduli «; (elastic response) and
iy, (Viscous response) associated with the fiber direction ny. They characterize the stress response associated
with the deformation and deformation rate in the fiber directions and are therefore directly related to the
appropriate structural tensors by the following relationships:

Ko = No : (A7, - No) (53)
K, = No : (A, - No) (54)

3.3.3. Bulk modulus in the material description
Similarly to elongation moduli, elastic and viscous bulk moduli can be respectively defined as follows:

KS = %1 ((AS 1) (55)
K= gl (AL ) (56)

The elastic bulk modulus characterizes the volumetric stresses associated with volumetric deformations of
the material while the viscous bulk modulus is related to the volumetric stresses associated with spherical
rates of deformation.

3.4. Elasticity and viscous tensor in the spatial configuration

The spatial counterpart of the material elasticity and viscous tensor, A° and A’, are, respectively, defined
by the push-forward relations:

1
(Ai)ijkl = jEII:jJF}cKF}L(AZ,)1JKL (57)

v 1 v
(Ag)ijkl = jEIFjJFkKEL(Aﬁ)UkL (58)
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4. A particular Helmholtz free energy function for biological soft connective tissues: modeling of the anterior
cruciate ligament

Further to the previous theoretical developments and to define an anisotropic viscohyperelastic con-
stitutive law, the existence of a Helmholtz free energy density s, isotropic function of its arguments
(I, I, 14,J5,J5), is postulated. The choice of the specific invariants will be justified below. It is further
hypothesized that this energy function can be represented by the sum of a strain energy function /°(1;, Iz, 1)
and a viscous energy function ¥ (J,,Js):

¢(11,13,14,J27J5) = We(11,13,14) + l//v(..]27.]5) (59)

This particular hypothesis implies that elastic and viscous stresses are additive as hypothesized in numerous
studies like that of Pioletti et al. (1998). However, it does not exclude the coupling between elastic and
viscous invariants in the function ¥"(J,,Js5) because the elastic invariants can be parameters V' (J>,Js).
Based on these observations y"(J,,Js) is rewritten as " (J,,Js, 11, I4). The additive decomposition of stress
corresponds to a Kelvin—Voigt rheological model in which a spring and a dashpot are arranged in parallel.

Superposition principles are often used in biomechanics because of the complexity of the structures
involved that means difficulty of experimental characterization of these interactions, and because it is very
difficult to assume any particular coupling relations between various physical quantities—in our study:
elastic and viscous potentials. One way of dealing with this problem is to assume a particular form (in our
study elastic and viscous energies are additive), check how it performs in specific conditions and then
compare the results with available experimental data. If the mathematical and experimental models are in
good agreement then the initial assumption was valid. However, it is essential to keep in mind that the
assumption is valid only for the particular conditions enforced. If the model is capable of predicting other
loading situations which are not those used for the calibration of the material model, the validity of the
model moves a step further.

4.1. Choice of the invariants characterizing the Helmholtz free energy function

As I is the sum of the square of the eigenvalues of the deformation gradient, it is a convenient invariant
representing the multi-axial state of deformation within the material (see Eq. (16)-1), specifically the ground
substance. I, is the square of the stretch in the fiber direction (see Eq. (22)) and has a therefore a
straightforward physical interpretation which characterize the directional mechanical properties of the soft
connective tissue introduced by the presence of collagen fibers. /5 characterizes the volumetric response of
the material (see Eq. (16)) and is directly related to the degree of compressibility. )

The invariant J; is the sum of the square of the eigenvalues of the rate of deformation C and is such that
its derivative with respect to the rate of the right Cauchy—Green deformation tensor is the rate itself (see Eq.
(29)-2). This ensures that a viscous energy function of J, (first-order term) will lead to terms in the viscous
stress response that are linearly dependent on the rate of deformation C. )

It is noteworthy that, in these conditions, the viscous response does not include non-linear terms in C.
This can be a limiting hypothesis that needs further investigation. In fact, failure to include non-linear terms
may lead to a constitutive model that does not capture specific non-linear effects. However, in this par-
ticular case it will be shown (Fig. 2 and Table 2) that a linear term (in C) captures well the viscohyperelastic
mechanical response of the ACL.

Js was chosen as the second invariant to characterize the anisotropic response of the viscous potential y".
In a similar manner as J,,J5 represent the sum of the square of the eigenvalues of the rate of deformation C
projected along the fiber direction. The derivative of Js with respect to C leads to a viscous stress term
depending explicitly on C and ny, unit vector characterizing the local orientation of the fiber.
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Fig. 2. Analytical stress-stretch curves obtained at four different elongation rates: 0.3, 6, 9 and 12 mms~' for the transversely isotropic
hyperviscoelastic law by identification with the analytical curves from Pioletti’s model. The loading scenario corresponds to uniaxial
extension along the fiber direction (aligned with the direction E;). The nominal stress P33 which corresponds to the actual force divided
by the initial cross section, is easily related to the second Piola—Kirchhoff stress tensor by P;; = F335;; The curves representing the
response of the transversely isotropic hyperviscoelastic law correspond to the material parameters from Table 2. It is noteworthy that
the elongation rates 0.3, 6, 9 and 12 mms~! correspond respectively to the deformation rates 1.2%s~!, 25%s7!, 38%s~! and 50%s~"'.
For this loading scenario the deformation gradient is: F = \/%E1 QE; + %Ez R E; + /E; @ E;.

Table 1
Material coefficients obtained by Pioletti et al. (1998) by identification of an isotropic viscohyperlastic potential with experimental
tensile tests on human ACLs

Material coefficients o [MPa] p n [MPas]
Pioletti et al. (1998) 0.30£0.08 12.20£2.18 39.29+£10.98

The elastic response was assumed to be the response at the lowest strain rate (0.012%s') while tensile tests at 25%s!, 38%s~! and
50%s~! allowed the determination of the viscosity coefficient .

4.2. Elastic contribution to the Helmholtz free energy function

The purely elastic behavior of the tissue, represented by the function y°, is assumed to arise from the
mechanical response of the ground substance and the collagen fibers. Because of the high water content of
soft connective tissues, the biological material is assumed to be incompressible. As a direct consequence, the
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Table 2
Material coefficients obtained by identification of the present transversely isotropic viscohyperelastic model with the Pioletti’s model
(Pioletti et al., 1998)

c; [MPa] c; [MPa] c3 1, [MPas] n, [MPas]
1+0.2629 1.7939 £ 0.2859 11.2055+1.1424 0.0523 £3.2654 15.0087 £2.5053
During the non-linear optimization procedure the following constraint was enforced: ¢; = 1. The correlation coefficient was

R? = {0.99361105}.

third invariant of C, I3, is equal to 1 and does not appear in the equations. Therefore ¥ is reduced to
Ve(11,14). In the absence of relevant experimental data, the interactions between the fibers and the matrix,
that would be represented by a function coupling /; and I, are not accounted for. In consequence y°(11, 1)
is split into the sum of a strain energy function representing the elastic contribution of the ground substance
¥;, and a strain energy function encompassing the anisotropic behaviour introduced by the collagen fibers
¥; (Spencer, 1992)

Ve =y (L, 1) = (1) + Y1) (60)

This hypothesis has been used successfully by numerous researchers to describe the mechanical behavior of
soft tissues (Hirokawa and Tsuruno, 2000; Holzapfel et al., 1996; Humphrey, 1990; Humphrey and Yin,
1987; Limbert, 2001; Limbert et al., 2004; Limbert and Taylor, 2001a; Puso and Weiss, 1998; Weiss et al.,
1996).

Y. is chosen as being the strain energy function of an incompressible neo-Hookean material (Ogden,
1984):

Yo, =c(l = 3) (61)

The neo-Hookean model has been used by several investigators to represent the elastic behavior of the
ground substance of connective tissues (Limbert, 2001; Limbert et al., 2004; Limbert and Taylor, 2001a;
Weiss et al., 1995; Weiss et al., 1996). For an incompressible material, i, also exhibits the important
property of convexity which assures stability of the material.

The typical non-linear stiffening of biological soft connective tissues under tension is provided by the
progressive recruitment of the collagen fibers. An exponential form is suitable to represent this behavior
(Eq. (62)-2). Collagen fibers do not support significant compressive loads and collagenous structures are
prone to buckle under very small compressive forces (Eq. (62)-1). The mechanical response of ligaments
under tension along the collagen fibers is only stiffening up to a certain value of strain, typically 2-3%
(Carlstedt and Nordin, 1989). After that point, the tensile behavior of the composite fibrous structure is
almost linear until failure (Eq. (62)-3).

Based on these observations, the following convex function of I, is proposed to represent the mechanical
contribution of the fibers:

0 if 1< 1
C (112 . N
Vi =gll) = § 5, e =] LS (62)

05\/1_4+6‘611’114 if 14 2]:

c1, €2, €3, €4, Cs, ¢g and I are material parameters. ¢ is determined by postulating C'-continuity of g(/s) at
I = I} where I[ = (1°)°, 2* being the stretch at which collagen fibers are uncrimped.

The objective of the present development was to fit the constitutive parameters of the particular
Helmholtz free energy function y with the experimental data collected by Pioletti (Pioletti, 1997; Pioletti
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et al., 1998) for the human anterior cruciate ligament. These authors used an exponential form for the
isotropic strain energy function based on the form proposed by Veronda and Westmann (1970).

This form was found to fit very well the experimental data up to a value of stretch of 1.12 along the
collagen fiber direction (Pioletti, 1997; Pioletti et al., 1998).

Given that Pioletti et al. (Pioletti, 1997; Pioletti et al., 1998) did not determine 7; experimentally and
given that the exponential function was found suitable to represent the mechanical response of the ACL up
to a stretch of 1.1-1.125, that is, beyond the usual toe region, it was decided to eliminate the linear term
from the stress response A%X““I“) = ¢s\/I4 + ¢ = ¢s/ + ¢ and reduce ; to the following form:

lﬂ? = g(14) =4 %2 [663(14*1)2 - 1] if I, > 1 (63)
2C3

1, ¢; and ¢3 are material parameters which warrant convexity of the elastic potentials provided that they
are all positive.

4.3. Viscous contribution to the Helmholtz free energy function

The viscous response of the material is assumed to be provided by the ground substance and from the
collagen fibers. In the absence of experimental data, it is hypothesized that matrix and fiber viscous con-
tributions are additive. This is a simplifying assumption that is believed to provide a good compromise
between analytical-experimental tractability and accuracy. It is important to remind that the present
developments were aimed at the development of a phenomenological model capable of describing the
macroscopic behavior of soft connective tissues. The important characteristic of phenomenological models
is that they do not necessarily reflect the microscopic structure of the material and its behavior at the
microscopic scale. Moreover, the viscous response of the tissue is augmented by a term which arises only
when the collagen fibers start to extend (Eq. (64)-2). This captures the viscous interactions between the
ground substance and the collagen fibers after uncrimping. The following viscosity function /" is therefore
proposed:

mda(l —3) if ,<1

1 . 64
1’]1.]2(11 — 3) +§112J5(I4 — 1)2 if Ip > 1 ( )

V=YL 0, Is, Ly ) = {

1, and y, are material parameters which warrant convexity of the viscous potentials ", provided that they
are all positive.

Again, by incorporating elastic invariants (/; and I;) in the viscous potential /', one accounts for
coupling between elastic and viscous effects.

4.4. Second Piola—Kirchhoff elastic stress tensor

As a reaction to the kinematic constraint of incompressibility (I; = 1), an arbitrary pressure p enters the
stress under the form of a Lagrangean multiplier, determined only by the equations of equilibrium or
motion and the boundary conditions (not the constitutive equations).

By combining Egs. (33), (61) and (63), the second Piola—Kirchhoff elastic stress tensor is obtained as

Se:{2cll+pC1 if I, <1

65
2erl + cres BV (I, — DN + pC" if Iy > 1 (65)
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4.5. Second Piola—Kirchhoff viscous stress tensor

By combining Eqs. (34) and (64), the second Piola—Kirchhoff viscous stress tensor is obtained as:

20, (1 = 3)C] if <1

SV = . 1 2 . (66)
20, (5L — 3)C+§172(I4 - D Ye| ifL>1

4.6. Identification of material parameters

In order to identify the proposed transversely isotropic hyperviscoelastic constitutive law with experi-
mental data related to tensile tests (in the natural fiber orientation) of the human anterior cruciate ligament
(Pioletti et al., 1998), explicit analytical expressions of the stress in the fiber direction are necessary.

4.6.1. Uniaxial extension in the fiber direction
As for the experimental and identification tests performed by Pioletti et al. (1998), it is assumed a state of
homogeneous deformation with isochoric kinematics. The stretch in the direction of the fibers is noted 4. If
the fiber direction is aligned with the direction E; in the reference conﬁguration the deformation gradient is
given by F = (E1 ®E; + E; ® E;) + 1E; ® E;. The derivative of Js is —é = 2C3;np @ ng = 2C3:E; ® E;.
In this partlcular configuration, the non-null component of the elastic second Piola—Kirchhoff stress
tensor is:

2(:1(1—;13) if A<1
S§3: .

; (67)
2¢ (1 pE ) + 2epea(# -1 (Z=1) if 2>1
The non-null component of the viscous second Piola—Kirchhoff stress tensor is
2 Ci | . ,
25 ()24—2—3)( %+C33> if 1<1
S = 5 o (68)
(;2+)—3)< z“ +c33> +2,(2 = 1)7Cy if > 1

Because of the incompressibility constraint the principal strain rates are dependent upon the following
relation:

Cii=——"5=- (69)

2 By
o <;2+j_3)(1 2/16)@3 if 1< 1
1

(70)
6)c33+2n2(z —1)’Cy; ifA>1

[\e]
=
S
~
(5]
+
PN}
|
w
~~_
7 N
—_—
t\)

N
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The isotropic viscohyperelastic potential proposed by Pioletti et al. (1998) is the following:

lp = l//(]],[z,.fz) = OCC’B(1173) — %ﬁ(lz — 3) +ZJ2([1 — 3) (71)

where o, f and # are material parameters consigned in Table 1.
The non-null component of the elastic second Piola—Kirchhoff stress tensor for Pioletti’s model is

B(72+2-3
e ijl ) - % L) 2

S = b 7 7

(72)

The non-null component of the viscous second Piola—Kirchhoff stress tensor for Pioletti’s model is

L 2 1
v = nz(zz +5- 3) (1 +2—16) (73)
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Stretch inthe fibre direction

¢ Isotropic Hyperelastic —— Transverselylsotropic Hyperelastic
= Isotropic Hyperviscoelastic (25 %/s) —o— Transverselylsotropic Hyperviscoelastic(25%/s)
A |sotropic Hyperviscoelastic (38 %/s) —— Transverselylsotropic Hyperviscoelastic(38 %/s)
® Isotropic Hyperviscoelastic (50 %/s) —o— Transverselylsotropic Hyperviscoelastic(50 %/s)

Fig. 3. Comparison between the present transversely isotropic hyperviscoelastic model and Pioletti’s isotropic hyperviscoelastic model.
Stress-stretch curves obtained at four different elongation rates: 0.3, 6, 9 and 12 mms~'. The loading scenario corresponds to uniaxial
compression—extension along the fiber direction (aligned with the direction E;). The curves representing the response of the transversely
isotropic hyperviscoelastic law correspond to material parameters from Table 2. It is noteworthy that the elongation rates 0.3, 6, 9 and
12 mms™! correspond, respectively, to the deformation rates 1.2%s™!, 25%s7!, 38%s~! and 50%s~!. The isotropic hyperviscoelastic
model exhibits an unrealistically high stiffness in compression along the fiber direction whilst the transversely isotropic model over-
comes this unwanted feature. For this loading scenario the deformation gradient is: F = %El ®R E; +%E2 R E; + AE; ® E;.



4252 G. Limbert, J. Middleton | International Journal of Solids and Structures 41 (2004) 4237-4260

The global response of the material is given by S33 = S%; + Sy;. Using a least-square non-linear optimization
procedure, the material parameters cy, ¢,, ¢3, ; and y, were determined from the analytical curves, pre-
viously identified by Pioletti et al. (1998). As these curves were obtained for tensile tests in the fiber direction
and by assuming isotropy of the material, it was necessary to relate the response of the matrix when no fiber
contributes. This was done by giving the estimated value of 1 MPa to the compliant solid matrix, also called
ground substance (Ault and Hoffman, 1992; Limbert, 2001; Limbert et al., 2004; Limbert and Taylor,
2001a). The graphic results of the identification is represented in Fig. 2. After identification of the trans-
versely isotropic hyperviscoelastic potential with Pioletti’s data and to check the performance of the model
in other simple loading situations, equibiaxial compression—extension along the fiber and isotropy direc-
tion, strip biaxial compression extension along the fiber direction and pure shear in the isotropy plane were
simulated (Figs. 4-9). Deformations are assumed to be homogeneous.

5. Results and discussion

During the identification procedure it was found that values of 5, greater than 0.055 MPas™! led to
unphysical behavior for high strain rates (50%s~!) in the case of equibiaxial compression—extension along

Nominal stress (MPa)

Stretch in the fibre direction

— Transversely Isotropic Hyperelastic (0.012 %/s)
o Transversely Isotropic Hyperviscoelastic(25 %/s)

4 Transversely Isotropic Hyperviscoelastic(38 %/s)

o Transversely Isotropic Hyperviscoelastic(50 %/s)

Fig. 4. Analytical stress-stretch curves (nominal stress Ps; along the direction E;) obtained at four different elongation rates: 0.3, 6, 9
and 12 mms™! for the present isotropic hyperviscoelastic model. The loading scenario corresponds to equibiaxial compression—
extension along the fiber direction (aligned with the direction E;) and along the axis aligned with E,. Material parameters of the
transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the deformation gradient is:
F :§E1 QE, +1E, ®E, + JE; @ E;.
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the fiber direction and along any axis perpendicular to it. Examples of this were positive stresses in
compression and negative in tension for certain ranges of stretch. Based on this finding, Pioletti’s model
was checked for this particular loading scenarios and unphysical behavior was also observed, especially
since the viscosity coefficient # has a value of 39.29 MPa. This highlights the importance of testing a
model for different loading scenarios and for various strain and strain rate ranges. It is also relevant to
keep in mind that homogeneous deformation loading scenarios are highly idealized cases that are likely
not to be encountered in real-life problems. Further efforts should be directed towards exploring new
functional form for the elastic and viscous potentials as well as studying the mathematical properties of
the associated elasticity and viscosity tensors which can lead to the establishment of explicit constitutive
restrictions.

The proposed Helmoltz free energy function, while encompassing essential features of the ligaments
(non-linear behaviour, stiffening in the fiber direction, high compliance in compression along the fiber
direction, incompressibility, finite strain, anisotropic viscous response and strain rate effects), was capable
of fitting accurately the analytical-experimental curves from Pioletti et al. (1998).

The strain rate effects, observed by Pioletti et al. (1998), are therefore also highlighted by the new
constitutive model (Figs. 2 and 3). The elastic response is described by only three parameters while the
viscous response is described by two parameters.

Nominal stress (MPa)

Stretch in the fibre direction

— Transversely Isotropic Hyperelastic (0.012 %/s)
o Transversely Isotropic Hyperviscoelastic(25 %/s)

A Transversely Isotropic Hyperviscoelastic(38 %/s)

o Transversely Isotropic Hyperviscoelastic(50 %/s)

Fig. 5. Analytical stress-stretch curves (nominal stress P, along the direction E,) obtained at four different elongation rates: 0.3, 6, 9
and 12 mms™' for the present isotropic hyperviscoelastic model. The loading scenario corresponds to equibiaxial compression—
extension along the fiber direction (aligned with the direction E;) and along the axis aligned with E,. Material parameters of the
transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the deformation gradient is:
F:/}ZEI QE| + AE, ® E; + /E; Q E;.
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In the optimization procedure, in order to fit experimental data from Pioletti et al. (1998), the consti-
tutive requirement put on the small value of the isotropic viscosity coefficient #, (to prevent introduction of
unphysical behaviors) has led to a dominant influence of the anisotropic viscosity coefficient #, on the
viscous response of the transversely isotropic hyperelastic material in uniaxial extension along the fiber
direction. This has the effect of attenuating the viscous effects when the material undergoes uniaxial
compression. On Fig. 3 one can observe that the viscohyperelastic responses at the various strain rates
(0.012 (purely elastic case), 25%s~!, 38%s~! and 50%s~') are nearly identical. This is also observed for the
strip biaxial compression case (Figs. 6 and 7).

The basic hypothesis to justify the extension of Pioletti’s model to the transverse isotropy case was that
isotropic models perform badly when subjected to compression along the natural fiber orientation. In fact,
high unphysiological compressive stresses are generated and this is clearly apparent in Fig. 3. Unlike the
nearly symmetrical response in tension and compression along the fibers, observed for the isotropic model,
the transversely isotropic model exhibits a much softer response in compression. This is a clear improve-
ment over isotropic models and shows how particular structural features can be incorporated into phe-
nomenological constitutive equations.

Figs. 4 and 5 presents the response of the material submitted to equibiaxial compression-extension. As
expected from the constitutive formulation, the response in compression and extension is identical along the
fiber direction and along the principal direction in the plane of isotropy (E,). As for the uniaxial extension

Nominalstress(MPa)

Stretch in the fibre direction

—— Transversely Isotropic Hyperelastic (0.012 %/s)
o Transversely Isotropic Hyperviscoelastic (25 %/s)
a Transversely Isotropic Hyperviscoelastic (38 %/s)
o Transversely Isotropic Hyperviscoelastic (50 %/s)
Fig. 6. Analytical stress-stretch curves (nominal stress Ps; along the direction E;) obtained at four different elongation rates: 0.3, 6, 9
and 12 mms~!' for the present isotropic hyperviscoelastic model. The loading scenario corresponds to strip biaxial compression—

extension along the fiber direction (aligned with the direction E;). Material parameters of the transversely isotropic hyperviscoelastic law
are taken from Table 2. For this loading scenario the deformation gradient is: F = %El RQE| +E;, ®E, + /E; ® E;.
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along the fiber direction, the strain rate effects can also be observed. In extension along the axes E,, the
viscoelastic response is lower in magnitude than the purely hyperelastic response. This effect is explained by
the fact that the simultaneous extension along E;, has dominant viscous effects (dependence on the aniso-
tropic viscosity coefficient #,) on the resulting hydrostatic pressure equilibrating the extension along E,.

Figs. 6 and 7 present the response of the material submitted to strip biaxial compression—extension along
the fiber direction. In compression, the response is stiffer along the fiber than along E,. Strain rates effects
are apparent in extension along the fiber direction (Fig. 6).

Figs. 8 and 9 present the response (respectively, P, and P»;) of the material submitted to pure shear in the
plane of isotropy. It is worthy to note that the nominal stress tensor is not symmetric. Viscous effects are
clearly dominant with respect to the elastic response and the shapes of the stress-stretch curves is closely
related to the strain rates at which the shear tests are performed.

The hyperelastic response of the ground substance was assumed to be governed by a neo-Hookean strain
energy function. Although this hypothesis is suitable to represent the isotropic mechanical response of the
tissue it is believed that alternative strain energy functions must be investigated as recently proposed by Weiss
etal. (2002). Similarly, other forms of strain energy functions for the fiber contributions should be considered.

As an alternative approach to the present study, the work by Hoffman and Grigg (2002) (and references
given therein) presents other possible ways to investigate experimentally the mechanical response of soft
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Stretch in the fibre direction
— Transversely Isotropic Hyperelastic (0.012 %/s)
o Transversely Isotropic Hyperviscoelastic (25 %/s)
a Transversely Isotropic Hyperviscoelastic (38 %/s)
o Transversely Isotropic Hyperviscoelastic (50 %/s)
Fig. 7. Analytical stress-stretch curves (nominal stress Py, along the direction E,) obtained at four different elongation rates: 0.3, 6, 9
and 12 mms~' for the present isotropic hyperviscoelastic model. The loading scenario corresponds to strip biaxial compression—

extension along the fiber direction (aligned with the direction E;). Material parameters of the transversely isotropic hyperviscoelastic law
are taken from Table 2. For this loading scenario the deformation gradient is: F = %El RE; +E; Q Ey) + JE; ® E;.
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tissues. The idea is to apply a pseudorandom Gaussian stress input to the tissue to be tested and to measure
the strain response. From the output, the Volterra—Wiener kernels are calculated. The advantage of this
protocol is that no a priori forms of the constitutive equations are required and that the pseudorandom
stress input does not restrict the testing to specific loading scenarios. In consequence, the calculated
material parameters are more likely to encompass a larger domain of validity frequency wise. In their study,
Hoffman and Grigg (2002) considered only uniaxial testing on rat skin and medial collateral ligament al-
though the method can be applied to multi-axial testing. Moreover, this experimental approach can
accommodate linear as well as non-linear viscoelastic effects and can distinguish their respective influence of
the tissue behaviour. A possible drawback is the practical testing of specimens for large deformations and
for extremely short times.

Comparable work has been performed by Quaglini et al. (2002). The authors used a discrete-time non-
linear Wiener model for determining the relaxation characteristics of bovine pericardium. Like in the study
of Hoffman and Grigg (2002), it was found that the non-linear kernel is necessary to capture more accu-
rately the mechanical response of the tissue. This approach is also suitable for implementation into a
predictive numerical code.

0.02

0.02 ~

0.01 -

Nominals tress (MPa)

0.01 ~

Shear deformation y

— Transversely Isotropic Hyperelastic (0.012 %/s)
o Transversely Isotropic Hyperviscoelastic (25 %/s)
a Transversely Isotropic Hyperviscoelastic (38 %/s)

o Transversely Isotropic Hyperviscoelastic (50 %/s)

Fig. 8. Analytical stress-stretch curves (nominal shear stress Pj,) obtained at four different elongation rates: 0.3, 6, 9 and 12 mms~! for
the present isotropic hyperviscoelastic model. The loading scenario corresponds to pure shear in the plane of isotropy (defined by E; and
E,). Material parameters of the transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the
deformation gradient is: F = yE, ® E; + E, Q E| + E; ® E; + E; @ E;.
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Shear deformation y

—— Transversely Isotropic Hyperelastic (0.012 %/s)
o Transversely Isotropic Hyperviscoelastic (25 %/s)
a Transversely Isotropic Hyperviscoelastic (38 %/s)

o Transversely Isotropic Hyperviscoelastic (50 %/s)

Fig. 9. Analytical stress-stretch curves (nominal shear stress Py|) obtained at four different elongation rates: 0.3, 6, 9 and 12 mms~! for
the present isotropic hyperviscoelastic model. The loading scenario corresponds to pure shear in the plane of isotropy (defined by E; and
E,). Material parameters of the transversely isotropic hyperviscoelastic law are taken from Table 2. For this loading scenario the
deformation gradient is: F = "/El [029] E2 + E] ® E] + Ez X E2 + E3 ® E3.

The particular Helmholtz free energy function described in Section 4 is such that the viscous stress tensor
depends linearly on the rate of deformation although the general framework developed in Section 3 can
accommodate a second-order non-linear dependence. The Helmholtz free energy function chosen was a
simple application of the constitutive framework and was limited by the nature of the experimental data
collected by Pioletti et al. (1998) which were identified with a linear strain rate model.

It is believed that in the context of high strain rate loading situations subjecting ligaments, the inclusion
of non-linear rate terms is relevant but not necessarily in the case of uniaxial tensile tests performed at
constant strain rates. Additional studies will be required to answer these questions with certainty.

6. Concluding remarks

In this study, the constitutive framework of Noll (1958), previously applied to soft tissue modeling by
Pioletti et al. (1998), has been developed for the specific case of transverse isotropy at the finite strain
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regime. The continuum constitutive model developed by Pioletti et al. (1998) had the merit to encompass
strain rate effects by using the rate of deformation as an explicit variable. However, a limitation of this
constitutive law was the assumption of isotropy. In fact, due to their fibrous structure (collagen fibers
embedded in a highly compliant solid matrix), modeling ligaments as anisotropic structures is indeed a
basic necessary requirement (Limbert, 2001; Limbert and Taylor, 2001a; Limbert and Taylor, 2001b;
Limbert and Taylor, 2002). Although viscohyperelastic constitutive laws featuring transverse isotropy
were already available (Holzapfel, 2000; Puso and Weiss, 1998), none of them was describing faithfully
the very short-term stiffening effect associated with strain rate, as observed in biological soft tissue
mechanics (Woo et al., 1981). In order to circumvent this lack in the literature, a new constitutive
framework was presented in the context of tensor formalism (with use of a structural tensor describing
the local structural arrangement of the continuum) and thermodynamic potentials. The general consti-
tutive law has been developed to take into account simultaneously the fibrous and viscous characteristics
of biological soft tissues while remaining thermodynamically admissible (convexity of thermodynamic
potentials enforced a priori).

New closed-form expressions of viscous stress tensors as well as fictitious viscosity tensors were derived
in the general case of transverse isotropy, that is, without restricting the way (coupling) the invariants
characterizing the viscosity appear in the expression of the viscous potential. The expression for the vis-
cosity tensor is of interest, because, in addition of its relevance to predict and explore the mechanical
behavior of a given material, this tensor holds fundamental mathematical properties of the constitutive law.
Stability studies and constitutive restrictions generally rely on arguments based on these properties.

The general expressions of the stress, elasticity and viscosity tensors are also essential in the finite element
implementation of constitutive laws for fiber-reinforced composites and it is hoped that they will be useful
with this regards.

The present phenomenological formulation is fairly simple but its drawback lies in the fact that the
tensorial invariants of the right Cauchy—-Green deformation tensor, its rate and agencies of the structural
tensor considered do not all have a physical interpretation. Applicability of the general viscohyperelastic
fiber-reinforced composite model remains to be explored on experimental grounds but with suitable
experimental material characterization one can envisage to integrate complex interactions between ele-
mental constituents within a constitutive law.

This aspect is possibly the most challenging as well as separating and identifying viscous effects between
the ground substance and the collagen fibers. In the present model it was assumed that the viscous response
provided by the interactions between the collagen fibers and the ground substance was accounted only
when the fibers are uncrimped. This possibly limits the applicability of the model for explicit accounting of
the viscous interactions between the ground substance and the collagen fibers which are known to arise
during uncrimping of the collagen fibers. Further studies should look at the way of integrating these
characteristics into the constitutive equations and ways of designing appropriate experimental protocols to
capture accurately elastic and viscous effects.
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